Object-Based Detection of Linear Kinematic Features in Sea Ice

نویسندگان

  • Stefanie Linow
  • Wolfgang Dierking
چکیده

Inhomogenities in the sea ice motion field cause deformation zones, such as leads, cracks and pressure ridges. Due to their long and often narrow shape, those structures are referred to as Linear Kinematic Features (LKFs). In this paper we specifically address the identification and characterization of variations and discontinuities in the spatial distribution of the total deformation, which appear as LKFs. The distribution of LKFs in the ice cover of the polar oceans is an important factor influencing the exchange of heat and matter at the ocean-atmosphere interface. Current analyses of the sea ice deformation field often ignore the spatial/geographical context of individual structures, e.g., their orientation relative to adjacent deformation zones. In this study, we adapt image processing techniques to develop a method for LKF detection which is able to resolve individual features. The data are vectorized to obtain results on an object-based level. We then apply a semantic postprocessing step to determine the angle of junctions and between crossing structures. The proposed object detection method is carefully validated. We found a localization uncertainty of 0.75 pixel and a length error of 12% in the identified LKFs. The detected features can be individually traced to their geographical position. Thus, a wide variety of new metrics for ice deformation can be easily derived, including spatial parameters as well as the temporal stability of individual features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method to Improve High-Resolution Sea Ice Drift Retrievals in the Presence of Deformation Zones

Retrievals of sea ice drift from synthetic aperture radar (SAR) images at high spatial resolution are valuable for understanding kinematic behavior and deformation processes of the ice at different spatial scales. Ice deformation causes temporal changes in patterns observed in sequences of SAR images; which makes it difficult to retrieve ice displacement with algorithms based on correlation and...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Sea Ice Detection Based on an Improved Similarity Measurement Method Using Hyperspectral Data

Hyperspectral remote sensing technology can acquire nearly continuous spectrum information and rich sea ice image information, thus providing an important means of sea ice detection. However, the correlation and redundancy among hyperspectral bands reduce the accuracy of traditional sea ice detection methods. Based on the spectral characteristics of sea ice, this study presents an improved simi...

متن کامل

Scaling Properties of Arctic Sea Ice Deformation in a High‐Resolution Viscous‐Plastic Sea Ice Model and in Satellite Observations

Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System...

متن کامل

Polar Sea Ice Monitoring Using HY-2A Scatterometer Measurements

A sea ice detection algorithm based on Fisher’s linear discriminant analysis is developed to segment sea ice and open water for the Ku-band scatterometer onboard the China’s Hai Yang 2A Satellite (HY-2A/SCAT). Residual classification errors are reduced through image erosion/dilation techniques and sea ice growth/retreat constraint methods. The arctic sea-ice-type classification is estimated via...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017